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A B S T R A C T   

Early detection and treatment can slow the progression of Alzheimer’s Disease (AD), one of the most common 
neurodegenerative diseases. Recent studies have demonstrated the value of multimodal fusion in early AD 
detection. However, most approaches to this have failed to consider data modality domains, their relationships, 
and variations in their relative importance. To address these challenges, we propose a Hierarchical Attention- 
Based Multimodal Fusion framework (HAMF) that utilizes imaging, genetic and clinical data for early AD 
detection. In the HAMF model, attention mechanisms are utilized to learn the appropriate weights for each 
modality and to understand the interaction between modalities through hierarchical attention. HAMF performs 
better than state-of-the-art methods, achieving an accuracy of 87.2% and an AUC of 0.913, which are superior to 
unimodal models. By comparing the results of different unimodal and multimodal models, we find that multi-
modal fusion can improve model performance more than unimodal models and clinical data is the most 
important modality. Our ablation experiment confirmed the effectiveness of HAMF. Finally, we used SHapley 
Additive exPlanations (SHAP) to improve the model’s interpretability. We provide the model as a guide for future 
research in the field, and as a framework for generating actional advice and decision support system for clinical 
practitioners.   

1. Introduction 

Alzheimer’s Disease (AD) is one of the most common and severe 
neurodegenerative diseases [12]. By 2050, AD and other types of de-
mentia are expected to affect at least 131 million people, according to 
the Alzheimer’s Association [3]. The disease’s primary cause is the 
accumulation of abnormal protein deposits, primarily beta-amyloid 
plaques and tau tangles, in the brain. These protein aggregates disrupt 
neural communication and lead to the characteristic cognitive decline 
associated with AD [4]. Mild cognitive impairment (MCI) is a condition 
that may or may not progress to Alzheimer’s disease (AD) or other types 

of dementia. While MCI is considered an early stage of AD, it is impor-
tant to note that not all MCI cases will develop into AD. In fact, studies 
have shown that only 10–12 % of patients with MCI progress to AD each 
year [5]. MCI can be classified as either progressive (pMCI) or stable 
(sMCI) depending on its conversion to AD in a specific period. Although 
AD cannot be cured effectively, some studies have shown that early 
detection and intervention can slow its progression [6,7]. Therefore, 
early detection of AD such as predicting MCI conversion to AD has 
become an increasing focus for ongoing research. 

As the deep learning (DL) models show substantial performances in a 
wide array of clinical decision support systems, several studies have 
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focused on developing DL-based models for predicting the conversion of 
MCI to AD using various unimodal medical data, such as Magnetic 
Resonance Imaging (MRI), Positron Emission Tomography (PET), clin-
ical data as well as genetic information [9–11]. Nevertheless, a unim-
odal approach does not suffice for clinical decision-making, which 
frequently requires people to consider information from multiple sour-
ces. As a practical example, when diagnosing complex disorders, clini-
cians not only consult clinical records and medical histories but also 
perform pathological or medical imaging tests to determine a diagnosis 
more accurately. 

Multimodal information can provide a more comprehensive view 
and can improve the accuracy of classification and prediction. For 
example, MRI, cerebrospinal fluid markers, and Single Nucleotide 
Polymorphisms (SNPs) can be used to obtain information about brain 
morphology, cerebrospinal pathology, and genetic information related 
to AD. Multimodal fusion is currently being successfully used in a wide 
range of domains, such as sentiment analysis, object recognition, and 
image segmentation [12,13]. Several models for diagnosing AD or pre-
dicting MCI to AD conversion based on multimodal fusion have been 
developed to increase the accuracy and effectiveness of diagnosis and 
prediction [14–22]. Despite some advancements and successes, existing 
studies have neglected the importance of cross-modal interaction and 

the varying importance of each modality in different tasks which are 
critical aspects of multimodal learning and can increase interpretability. 
Most existing research simply concatenates or maximizes features 
extracted from multiple modalities [14–22], which may result in the loss 
of potentially important information and make it challenging to 
generate an effective cross-modal representation. Additionally, most 
existing studies used a limited number of modalities, or just simply used 
core genes, such as APOE4, to represent the complicated genetic mo-
dality [18,20,21]. 

To address the limitations of existing studies, we propose a Hierar-
chical Attention-Based Multimodal Fusion framework (HAMF). By 
considering the relative importance of different modalities for the target 
task, HAMF can simulate the actual decision-making process to priori-
tize relevant modalities. Additionally, the hierarchical attention mech-
anism allows us to learn cross-modal representations across all 
modalities. Performance of the proposed fusion approach will be eval-
uated via predicting the conversion of MCI to AD. The specific process is 
shown in Fig. 1. This paper offers the following innovations. 

1) HAMF is proposed to adequately explore the cross-modal in-
teractions and enhance relevant information expression, while 

Fig. 1. The Structure of Hierarchical Attention based Multimodal Fusion framework (HAMF). Specifically, features of different modalities are extracted in the first 
step. The second step involves mapping the feature representations of different modalities into the same latent space using the nonlinear gating module. As a final 
step, using hierarchical attention, the model can infer both the optimal weights of different modalities dynamically and learn the cross-modal representation. CNN: 
Convolutional Neural Networks; SDAE: The Stacked Denoising Autoencoder; DNN: Deep Neural Network; I: Medical Imaging; G: Genetic; C: Clinical. 
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suppress redundant information, and finally achieve effective 
multimodal fusion.  

2) Our methods achieved state-of-the-art performance compared to 
previous studies. We also show that multimodal fusion can have 
superior performance compared to unimodal models.  

3) A comprehensive evaluation of the importance of each modality or 
combination for predicting MCI to AD conversion is presented, which 
identified the most appropriate modality and optimal combination 
for prediction and proved the necessity of multimodal fusion. To the 
best of our knowledge, this method represents a pioneering effort in 
accounting for the varying significance of each modality in predict-
ing the conversion from MCI to AD. 

This paper is structured as follows: Section 2 provides an overview of 
related works in the field, Section 3 delves into a detailed description of 
both the materials used for evaluation and our proposed methodology, 
Section 4 reports the experimental results, Section 5 presents in-depth 
discussions of our findings, and, finally, Section 6 outlines our conclu-
sions. In addition to addressing the cause of AD, our research emphasizes 
early detection and intervention, with a specific focus on predicting the 
conversion of Mild Cognitive Impairment (MCI) to AD, which has 
become a central area of investigation in the ongoing quest to combat 
this debilitating disease. 

2. Related work 

Despite recent advances in medical and computer science, early 
detection of AD remains a challenge in the AD diagnosis research field. 
To improve the accuracy and reliability of AD detection, simple unim-
odal methods need to be augmented with multimodal approaches that 
combine multiple types of data and analysis techniques. A detailed 
explanation of AD detection techniques follows in the remainder of this 
section. 

2.1. Single-modal based AD diagnosis 

Early detection of AD is often based on medical imaging [23,24], 
electroencephalography (EEG) [25], clinical data [26], and genetic data 
[27,28]. Initially, machine learning-based AD detection models were 
often built based on unimodal data [9,29,30]. Most of these researchers 
first run feature selection methods to extract important features such as 
hippocampal volume, and surface area from the original data, and then 
establish a classification model to detect or predict AD [29,30]. How-
ever, there are some shortcomings in such studies. First, the model based 
on the feature selection method assumes in advance that the selected 
feature is the most informative, which may not cover the whole picture 
of the data. Secondly, since feature selection and classification are per-
formed separately, it will cause further loss of useful information [31]. 

Deep learning has demonstrated remarkable results compared to 
traditional machine learning [32,33]. One advantage of deep learning 
model is to bypass the feature selection step which usually require 
specific domain knowledge. When combining with a tunable loss func-
tion, it can be used by experts in non-medical fields for their research or 
applications. For example, Convolutional Neural Network (CNN) has 
achieved good performance in the classification or prediction tasks of 
AD [23,24]. 

2.2. Multimodal based methods for AD diagnosis 

With the development of deep learning, multimodal fusion has been 
developed and increased the accuracy of diagnosis and prediction. 
Despite some advancements and successes, there still have some 
limitations. 

The first limitation with fusion is the neglect of cross-modal inter-
action and the importance of each modality in different tasks. Fusion 
data depicts instances more robustly and comprehensively by combining 

complementary information from multimodal information and high-
lighting key elements. There are two main multimodal fusion strategies; 
the first approach is average fusion [15], which gives equal weight to 
information from different sources. As a result of the average fusion 
approach, each source of information contributes equally to the target 
task, which may lead to some significant potential information being 
lost. Moreover, this is not consistent with the actual decision-making 
scenario as different information contains different amounts of infor-
mation for the actual decision (i.e. PET provides more information than 
MRI for the detection of bone metastases [34]). The other fusion strategy 
is maximization fusion [35], which maximizes the most relevant infor-
mation among all information. In this approach, only the most relevant 
information is considered, while other information is ignored. To ach-
ieve effective and adequate multimodal fusion, it is important to 
differentiate the weighting based on the importance of different 
modalities. 

While many existing methods adopt a straightforward approach to 
integrate multimodal information by simply concatenating features 
extracted from different modalities, there is a growing interest in 
leveraging attention mechanisms to fuse multimodal data [36–38]. For 
instance, Zhang et al. introduced a novel multi-modal cross-attention 
framework for Alzheimer’s Disease (AD) diagnosis [36]. However, a 
common challenge in these studies is the limited availability of input 
data for multimodal fusion. To illustrate, in the work by Zhang et al., the 
cross-attention framework was applied to fuse MRI, PET, and CSF data 
for AD diagnosis, yet this approach did not incorporate valuable clinical 
and genetic information [36]. Many multimodal fusion models for AD 
are based on the fusion of two modalities or only use the APOE4 to 
represent the full genetic information. For example, Kang et al. proposed 
a multimodal fusion framework based on transfer learning for AD pre-
diction using two modalities of medical imaging data, MRI and diffusion 
tensor imaging [39]. Zhou et al. mapped two types of medical imaging 
data, MRI and PET to a common multimodal space using nonlinear 
mapping, and finally used SVM for the prediction of AD [40]. Similarly, 
Lahmiri et al. used MRI and cognitive assessment scores for classification 
prediction based on SVM [41]. Khatri and Kwon used MRI, cognitive 
scores, cerebrospinal fluid biomarkers, and APOE4 for AD prediction 
based on feature selection as well as extreme machine learning [21]. To 
better explore the performance of different multimodal fusions on AD 
prediction models, it is important that studies should incorporate more 
modalities with well-represented input features. 

3. Materials and method 

3.1. Dataset and data preprocessing 

In this study, we used the ADNI (Alzheimer’s Disease Neuroimaging 
Initiative) database, which is the largest and most widely used AD 
database. Launched in 2003 by several public and private organizations, 
the ADNI study aims to identify imaging, genomics, biological markers, 
and neuropsychological assessments that can be used to track the pro-
gression of AD [42]. More information can be accessed at http://adni. 
loni.usc.edu/. The ADNI data repository contains information from 
over 2,220 participants, including imaging, genetics, and clinical data. 
There are two types of imaging data: MRI and PET. The invasive nature 
of PET, combined with the low cost of MRI, led us to use MRI for this 
study. For genetics, we used SNP data, as previous genome-wide asso-
ciation studies have identified several genetic variants associated with 
an increased risk of AD [43,44]. 

The Clinical data in ADNI includes demographics, medication, 
biochemical data, and clinical tests (e.g., memory tests, and cognitive 
tests). Based on previous research [45,46], we chose 42 clinical features 
from clinical data for this study (as seen in Table 1 and Table 2). A 
detailed description of each clinical variable can be found in the sup-
plementary material. 

The definition of sMCI and pMCI is based on the DSM-V criteria, 
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where pMCI refers to MCI subjects who convert to dementia during the 
follow-up period, while sMCI is defined when the subjects do not fulfill 
these criteria [47]. While different studies use varying follow-up times, 
we have defined our follow-up period as 3 years. In other word, we 
defined sMCI as participants who do not convert to AD within 3 years, 
while pMCI as participants who do. Through the classification of sMCI 
and pMCI, we were able to predict the conversion of MCI to AD. This 
study only selected baseline data from participants to prevent data 
leakage. Our study included 577 MCI from 2200 data which all contain 
MRI. Our dataset included 297 sMCI and 280 pMCI and among them166 
sMCI and 177 pMCI with MRI, SNP, and clinical data. Participants with 
three modalities and one or two modalities underwent multimodal 
fusion and feature extraction, respectively. Table 1 and Table 2 sum-
marize the subjects in detail. 

3.2. Data pre-processing 

As mentioned above, our study consists of three modality data: MRI, 
SNP, and Clinical. 

MRI data. The MRI data was preprocessed using FSL (https://fsl. 
fmrib.ox.ac.uk/). First, the N4 algorithm is used to correct bias fields 
[48]. In addition, affine linear alignment of onto the MIN152 atlas. 
Lastly, we stripped the skulls from each image and got images that had 
129x145x129 voxels. 

SNP data. SNP pre-processing consists of two steps to complete 
quality control and dimensionality reduction. Firstly, quality control 
was performed first on SNPs using Plink, retaining those with (i) geno-
type quality greater than 20; (ii) minor allele frequency (MAF) greater 
than 0.01; (iii) per-site missing rate less than 5 %, and (iv) 

Hardy–Weinberg equilibrium p-value greater than 0.05. There are still 
7,610,179 SNPs in the VCF file after quality control, but only a few of 
them are associated with AD. Accordingly, we selected only SNPs that 
belong to the top AD gene candidates in AlzGene (https://www.alzgene. 
org/). Finally, we got 143,498 SNPs. Three groups were created from the 
final data: no alleles, just one allele, or two alleles. 

Clinical data. This study covers 42 clinical features, including 38 
continuous variables, 3 two-category variables (gender, whether the 
parent had dementia, whether the parent had AD), and 1 multi-category 
variable (marital status), as shown in Table 1, Table 2. Detailed infor-
mation about these features can be found in the Supplementary File and 
ADNI (https://adni.loni.usc.edu). We used the average and the mode to 
interpolate missing values for the continuous and categorical variables, 
respectively. Each variables missing rate can be found in the Supple-
mentary File. The continuous features were normalized using the Z- 
score method. One-hot encoding was performed for the categorical 
features. 

3.3. Unimodal feature representation 

In our study, we utilized various models to extract features from 
different modalities based on their characteristics. For MRI data, we 
opted for the 3D ResNet architecture, a Convolutional Neural Network 
(CNN) variant. CNNs have consistently demonstrated superior perfor-
mance in processing medical imaging data due to their ability to capture 
spatial relationships effectively. When dealing with Single Nucleotide 
Polymorphism (SNP) data, characterized by high dimensionality and 
sparsity, we combined feature selection techniques with Stacked 
Denoising Autoencoders (SDAE) for feature extraction. This approach 
leverages the strengths of SDAE in handling high-dimensional, noisy 
data. Lastly, for structured clinical data, we employed a Deep Neural 
Network (DNN), a well-established method for representing clinical data 
structure. 

3.3.1. MRI feature representation 
In our previous study, we proposed a two-stage transfer learning 

method that combines transfer learning and contrastive learning for 
extracting medical imaging features [49]. Specifically, we used a 3D- 
ResNet pre-trained on a large public medical imaging dataset to iden-
tify common features, and then applied contrastive learning to extract 
more specific features from the target images. Our results indicated that 
our two-stage model improved performance compared to previous 
studies and outperformed benchmark models. In this study, we used the 
same method to extract MRI features. 

3.3.2. SNP feature representation 
In this study, the preprocessed SNPs contained 143,498 dimensions, 

but the sample size was still relatively small with over 300 subjects. 
Genomic data often contains a large number of irrelevant or redundant 
features, which can hinder the performance and efficiency of machine 
learning models [50]. Therefore, it is important to apply dimensionality 
reduction techniques to extract the most relevant and informative fea-
tures from the genomic data. 

Fig. 2 illustrates the genomic feature extraction method used in this 
study. The method consisted of two stages: feature selection and high- 
order feature extraction. In the feature selection stage, we proposed a 
hybrid multi-filter and wrapper method (HMFW) that combines the 
advantages of filter and wrapper methods while overcoming their lim-
itations. The HMFW method first used multiple filter methods to quickly 
rank the features by their relevance to the target. To avoid the instability 
and loss of significant features that can occur with individual filter 
methods, we selected three representative filter methods (Information 
Gain, Fisher Score, and χ2 test) and jointly applied them to obtain the 
ranked feature set. Then, the wrapper method [51] is used to select the 
optimal subset of features that maximizes the target information, as 
shown in Fig. 2 (a). After feature selection, we obtained 450 genomic 

Table 1 
A summary of the continuous clinical variables of participants.   

sMCI(n = 297) pMCI(n = 280) Combined(n = 577) 

Age 72.28 ± 7.43 73.92 ± 6.96 73.07 ± 7.25 
Education years 16.04 ± 2.78 15.80 ± 2.79 15.92 ± 2.79 
CDR 1.20 ± 0.65 1.92 ± 0.94 1.55 ± 0.88 
ADAS11 8.48 ± 3.55 12.88 ± 4.35 10.62 ± 4.53 
ADAS13 13.64 ± 5.45 20.84 ± 5.90 17.12 ± 6.72 
MMSE 28.00 ± 1.70 26.93 ± 1.73 27.48 ± 1.79 
RAVLT_I 37.72 ± 10.17 29.00 ± 7.51 33.48 ± 9.98 
RAVLT_L 4.75 ± 2.40 2.99 ± 2.26 3.90 ± 2.49 
RAVLT_F 4.35 ± 2.52 4.99 ± 2.22 4.66 ± 2.40 
RAVLT_PF 50.36 ± 30.50 75.06 ± 28.76 62.34 ± 32.13 
LDELTOTAL 7.03 ± 2.90 3.49 ± 2.91 5.31 ± 3.40 
TRABSCORE 103.77 ± 49.81 122.23 ± 77.05 118.58 ± 67.69 
FAQ 1.55 ± 2.77 5.40 ± 4.80 3.41 ± 4.34 

*Data are mean ± standard deviation: CDR: Clinical Dementia Rating; ADAS: 
The Cognitive Subscale Alzheimer’s Disease Assessment Scale; MMSE: Mini- 
Mental State Examination; RAVLT: The Rey Auditory Verbal Learning Test; 
LDELTOTAL: Logical Memory - Delayed Recall; TRABSCORE: Trails B score; 
FAQ: Functional Activities Questionnaire.  

Table 2 
A summary of the categorical clinical variables of participants.    

Participants, No (%)   

sMCI pMCI Combined 

Sex Male 174(58.6) 172(61.4) 346(60.0)  
Female 123(41.4) 108(38.6) 231(40.0) 

Marital Status Married 215(72.3) 206(73.6) 421(73.0)  
Divorced 32(10.8) 17 (6.1) 49(8.5)  
Widowed 43(14.5) 30(10.7) 73(12.7)  
Never married 7(2.3) 4(1.4) 11(1.9) 

Parents with Dementia Yes 143(48.1) 172(61.4) 315(54.6)  
No 154(51.9) 104(37.1) 258(44.7) 

Parents with AD Yes 141(47.5) 147(52.5) 288(49.9)  
No 156(52.5) 133(47.5) 289(50.1)  
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features. 
After feature selection, we used a stacked denoising autoencoder 

(SDAE) to extract high-order feature representations that capture the 
hidden relationships among the selected features. SDAE extracted deep 
features from the original input by combining multiple denoising 
autoencoders (DAE). Hidden layers of previous DAE serve as inputs to 
the next DAE. Fig. 2(b) shows the SDAE training process, which consists 
of unsupervised pre-training and supervised fine-tuning. Unsupervised 
training involves training each DAE individually. Zero-masking noise 
algorithm was used in this paper to add noise to the data, which resets 
some feature values to zero [52]. Through the encoder and decoder, the 
DAE reconstructed the original data. Following unsupervised training, 
all denoising autoencoders were connected and then combined with the 
SoftMax classifier where the parameters of the cascaded network were 
fine-tuned. Fig. 2 (b) illustrates the training process of the SDAE model. 

3.3.3. Clinical feature representation 
As discussed earlier, raw clinical data is typically sparse and cannot 

be directly fused with other modalities. To extract useful features from 
clinical data, we experimented with different network architectures and 
chose a deep neural network (DNN) which usually used as a clinical 
structure data representation method [53]. 

The DNN model had an input layer with 49 dimensions, two hidden 
layers with 64 and 32 dimensions, respectively, and an output layer with 
a single dimension. We used the ReLu activation function between the 
input and hidden layers and added BatchNorm1D to each layer. The 
output layer used the sigmoid activation function and the cross-entropy 
loss function. This architecture allows us to extract clinical features that 
can be fused with other modalities for improved AD prediction 
performance. 

3.4. Hierarchical Attention-Based multimodal fusion 

Using the above method, the medical imaging feature xi, the genetic 
feature xg, and the Clinical feature xc are extracted respectively. Before 
fusion, the feature vector of MRI, SNP, and clinical data were projected 
into a shared embedding space with the same feature dimension. This is 
necessary because different modalities have different feature di-
mensions, which will affect the final fused feature representation. The 
existing projection methods include linear projection and nonlinear 
projection. 

To enable the model to recalibrate each dimension according to its 
learned importance and to ensure that the dimensions are activated 
uniformly across the three modalities, we used nonlinear gating [54] 
which is defined as: 

x̃m =
(
Wm

1 xm + bm
1

)◦σ
(
Wm

2

(
Wm

1 xm + bm
1

)
+ bm

2

)
(2-1)  

x̃g = (Wg
1 xg + bg

1)
◦σ(Wg

2 (W
g
1 xg + bg

1)+ bg
2 ) (2-2)  

x̃c =
(
Wc

1xc + bc
1

)◦σ
(
Wc

2

(
Wc

1 + bc
1

)
+ bc

2

)
(2-3)  

Where x̃m, x̃g and x̃c are the 64-dimensional vectors of imaging, genetic, 
and clinical data after nonlinear gating mapping, respectively. W and b 
are both learnable parameters for the weight vectors and bias, respec-
tively. In this case, ◦ is a multiplication of the corresponding positions, 
and σ is the sigmoid activation function. 

The nonlinear gating is inspired by the Gated Linear Unit (GLU)[55], 
which is formulated as follows: 

x̃ = (W1x+ b1)
◦σ(W2x+ b2) (2-4) 

Compared to GLU, nonlinear gating was chosen for this study mainly 
for the following reasons. Firstly, nonlinear gating allows the model to 
capture nonlinear interactions between features and intra-feature 

Fig. 2. SNP feature extraction architecture. Our study first used the (a) SNP feature selection method to reduce the features and then used (b) SDAE to capture the 
hidden relationships among features and extract high-order feature representations for fusion or prediction tasks. The (b) left is the unsupervised training process of 
the SDAE and the right is the supervised fine-tuning process of the SDAE. 
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dependencies, which can improve the performance of the fusion model. 
Secondly, nonlinear gating allows the model to recalibrate the activation 
strength of each feature dimension based on its importance, which can 
improve the interpretability and robustness of the model. These benefits 
make nonlinear gating a suitable choice for multimodal fusion in the 
context of AD prediction. 

To improve the performance and interpretability of the multimodal 
fusion model, we propose a hierarchical attention mechanism, as illus-
trated in Fig. 1. The model first fused each pair of unimodal feature 
vectors (MRI & SNP, MRI & Clinical, and SNP & Clinical) using an 
attention mechanism, which allows the model to focus on relevant in-
formation and suppress redundant information. The pairs of fused 
feature vectors were then subjected to a higher-level attention 
mechanism-based fusion to form the final fused representation of all 
three modalities (MRI & SNP & Clinical). This hierarchical approach 
enables the model to capture the complex relationships between the 
different modalities and their relevance to the target. 

The specific attention mechanism in this study was based on the 
Keyless Attention mechanism [56]. Keyless Attention is defined as 
follows: 

ei = wT xi (2-5)  

λi =
exp(ei)

∑n
j=1exp

(
ej
) (2-6)  

Attention
(
x1⋯xM) =

∑M

i=1
λixi (2-7) 

Our hierarchical attention is defined as follows: 

xms = Attention
(

x̃m, x̃g
)

(2-8)  

xmc = Attention
(

x̃m, x̃c
)

(2-9)  

xcg = Attention
(

x̃c , x̃g
)

(2-10)  

xfusion = Attention (xmg, xmc, xcg) (2-11) 

The fusion of three modalities is shown in Fig. 1. In the case of only 
two-modal fusion, only the general attention calculation (2–12) is used. 

xab = Attention
(

x̃a, x̃b
)
, where a, b ∈ (m, g, c) (2-12)  

3.5. Classification 

After fusion, we applied a two-layer multilayer perceptron (MLP) to 
the fused feature representation. For the three-modal fusion, we use 
(2–11) to get the fused feature representation. For the case of only two- 
modal fusion, only (2–12) used to get the fused feature representation. 
The MLP has an input layer with the same number of nodes as the fused 
representation, a hidden layer with half the number of nodes, and an 
output layer with two nodes. The model is trained using the cross- 
entropy loss function to minimize the error between the predicted and 
actual disease labels. Once the model was trained, it can be used to 
predict the disease status of new subjects based on their multimodal 
data. 

3.6. Experimental settings and evaluation 

3.6.1. Experimental settings 
The models have been implemented in Pytorch, a framework 

developed by Facebook with a GeForce GTX 3080Ti. To save compu-
tational resources, we used the pre-trained parameters of the MRI model 
from our previous study without updating them. The data used in this 

multimodal fusion study consisted of 343 samples (166 sMCI and 177 
pMCI) with MRIs, SNPs, and clinical data, divided into training and test 
sets with a 3:1 ratio as show in Fig. S1. We applied five-fold cross-vali-
dation on the training set to select the optimal hyperparameters and the 
best models for each modality and the multimodal fusion. Finally, the 
model is applied to the test set for model evaluation. As for the unimodal 
model (MRI and clinical), we used all 577 samples to fully train the 
model which were divided into training and test sets with a 4:1 ratio. 
The data spilt are shown in Fig. S1. Table S2 shows the best hyper-
parameters for unimodal and multimodal models. 

3.6.2. Evaluation 
We evaluated our models using Accuracy (Acc), Sensitivity (Sens), 

Specificity (Spec), F1-Score (F1), and Area Under ROC Curve (AUC). 
Lastly, we constructed confidence intervals (CIs) for the evaluation 

metrics of the models using non-parametric bootstrapping. As a result, 
each estimate was given a distribution and a 95 % CI estimated using the 
2.5 and 97.5 percentiles of the bootstrap samples [57]. 

4. Results 

4.1. Performance of baseline model 

We first evaluated the performance of a single-modality model as the 
baseline for further comparisons. Fig. 3 summarizes the results and 
shows that Clinical has the best unimodal performance, while SNP has 
the worst. For the MRI modality, we used the results of our previous 
studies, and the best model achieved an accuracy of 81.9 %. For the 
clinical modality, as the method, we created 2 fully connected layers, 
and the best model achieved an accuracy of 83.7 %. For the SNP mo-
dality, we extracted the SNP features as described earlier and added a 
SoftMax classifier for prediction. The best SNP unimodal model ach-
ieved an accuracy of 67.4 %. 

4.2. Performance of multimodal models 

The following experiments were performed for predicting the con-
version of MCI to AD using different combinations of modalities. These 
experiments were conducted to verify the effectiveness and necessity of 
multimodal fusion and to determine the most important modalities or 
combinations of modalities for disease prediction. This information can 
be useful for healthcare professionals in decision-making and for guiding 
future research. 

1) Unimodality. Predict MCI to AD conversion based on a single mo-
dality as in section 4.1.  

2) Two modalities. Predict MCI to AD conversion is based on any 
combination of the two modalities. The fused feature representation 
is obtained by fusing the two modalities using equations (2)–(12), 
which are then combined with a classification layer to predict Alz-
heimer’s disease. 

3) Three modalities. Predicting MCI to AD conversion using three mo-
dalities based on the HAMF. 

The above models were evaluated for their ability to predict MCI to 
AD conversion. Table 3 lists all 4 evaluation metrics of models with 
different modality combinations, and the optimal outcome is bolded. As 
shown in Table 3A, clinical data achieved 83.7 % accuracy as the most 
accurate unimodal model. Compared with unimodality, the fusion of 
two modalities resulted in different degrees of improvement of accuracy 
in MCI to AD conversion prediction, and the optimal two-modality 
combination was MRI & Clinical with an accuracy of 87.2 %. 
Compared with the optimal MRI & Clinical, the accuracy of the three 
modality fusions of MRI&SNP &Clinical was not improved, which was 
also 87.2 %, but the accuracy was improved compared with the other 
two modalities fusions. 
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Regarding the AUC metric, the distribution of optimal modality 
combinations demonstrated similarities with accuracy, albeit with slight 
distinctions. In terms of accuracy, the fusion of the two modalities 
Clinical & SNP achieved the same accuracy of 83.7 % as the unimodal 
model (clinical data). However, in terms of AUC, Clinical & SNP 
improved by 0.1 % over Clinical. Similarly, two-modality fusion MRI & 
Clinical and three-modality fusion MRI& Clinical & SNP achieved the 
same accuracy of 87.2 %, but the AUC of MRI & Clinical &SNP improved 
by 0.6 % over MRI & Clinical to obtain the highest AUC value among all 
results, and the ROC curves are shown in Fig. 4(a). 

4.3. Ablation study for the HAMF module 

The following comparative experiments were conducted to demon-
strate the effectiveness of the HAMF proposed in this paper:  

1) Concatenate. Concatenate features of different modalities directly to 
form the final fused feature.  

2) General Attention. A general attention mechanism that directly 
performs the summation of the three attentions without hierarchy.  

3) Hierarchical Attention with Linear Gating. The others are the same as 
our method, except that nonlinear gating is replaced by linear gating.  

4) Hierarchical Attention with nonlinear gating (Our). 

The effectiveness of the fusion strategy is evaluated based on the 
prediction results with different multimodal fusion strategies. The 
evaluation results of different multimodal fusion strategies are shown in 
Fig. 6. The multimodal fusion strategy based on hierarchical attention 
with nonlinear gating achieve the highest accuracy (ACC), sensitivity 
(Sens), specificity (Spec), F1 score, and AUC. Compared with the direct 
concatenate feature (Concatenate) model, the fusion strategies using the 
attention (general attention, hierarchical attention) all achieve better 
prediction results for conversion. Compared with the linear gating, the 
hierarchical attention with nonlinear gating achieves better perfor-
mance as shown in Fig. 6. 

As shown in Fig. 5 (a), the ROC curves of the four models indicate 

Fig. 3. Evaluation results of unimodal models. This graph shows all 5 evaluation metrics for imaging, genetics, and clinical models. Clinical models give the best 
overall performance, while genetic models give the lowest overall performance. 

Table 3 
Performance of different multimodal models for prediction.    

Acc Sens Spec F1 

Unimodal MRI 0.818 
(0.798, 0.841) 

0.785 
(0.754, 0.821) 

0.850 
(0.815,0.877) 

0.807 
(0.783, 0.834)  

SNP 0.663 
(0.641, 0.686) 

0.733 
(0.697, 0.765) 

0.586 
(0.541, 0.630) 

0.694 
(0.674,0.717)  

Clinical 0.837 
(0.819,0.863） 

0.911 
(0.890,0.931）） 

0.756 
(0.725,0.799） 

0.854 
(0.837,0.875） 

Two 
Modality 

MRI + SNP 0.826 
(0.801,0.850） 

0.844 
(0.814,0.875） 

0.805 
(0.768,0.833） 

0.835 
(0.812,0.859）  

Clinical + SNP 0.837 
(0.818,0.860） 

0.866 
(0.830,0.900） 

0.805 
(0.764,0.836） 

0.848 
(0.826,0.867）  

MRI + Clinical 0.872 
(0.850,0.891）） 

0.889 
(0.860,0.911） 

0.854 
(0.827,0.882）） 

0.879 
(0.860,0.897) 

Three Modality MRI + SNP+
Clinical 

0.872 
(0.851,0.890) 

0.888 
(0.857,0.909) 

0.854 
(0.824, 0.882) 

0.884 
(0.859,0.896) 

The bold numbers denote the maximum value of each column. A 95% confidence interval is described in the parenthesis; ACC, Accuracy; F1, F1-score; Sens, Sensitivity; 
Spec, Specificity. 
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that multimodal fusion based on hierarchical attention produces the best 
AUC. Direct concatenate obtain the poorest result with an AUC of 0.856, 
which is lower than the arbitrary model using the attention mechanism 
and lower than the clinical alone or any two-modality fusion model (as 
shown in Fig. 5). Hierarchical attention obtain a better result with AUC 
of 0.880(linear gating) and 0.913(nonlinear gating) than general 
attention with AUC of 0.868. Hierarchical attention with nonlinear 
gating (our model) get the best performance with AUC of 0.913. 

Bold numbers indicate the column’s maximum value; AUC: Area under 
the ROC Curve; ACC: Accuracy; CNN: convolutional neural network; SDAE: 
Stacked Denoising Auto-Encoder; Time, published time. ROI, Region of in-
terest, using Freesufer or other tools to extract the brain feature. CSF, Cere-
brospinal Fluid; Clinical, containing demographic information, neurological 
scale information, etc.; MRI, Magnetic Resonance Imaging; PET, Positron 
Emission Computed Tomography; SNP, Single Nucleotide Polymorphism; 
NA, not available. 

Fig. 4. Curves of Different multimodal importance.  

Fig. 5. Curves of Different multimodal Fusion strategies. HA, Hierarchical Attention.  
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5. Model explainability 

An advantage of using attention mechanisms is the interpretability of 
their results. For this reason, we visualize our Hierarchical Attention 
used in the HAMF model. 

Fig. 7 illustrates the fusion of unimodal features using hierarchical 
attention. As shown in the figure, the weights (color-coded) of each 
modality are depicted. As expected, the network focuses primarily on 
clinical and MRI channels in the first layer, while the clinical-MRI pair in 
the first layer provides the highest score in the second layer. 

Unimodal and multimodal model results indicated that Clinical 
features are important to the model’s performance. We examined all 
clinical feature carefully to make sure none could give an unfair 
advantage to the model. In this study, we leveraged SHapley Additive 
exPlanations (SHAP) [62] to evaluate the importance of each input 
feature in our models. SHAP is a method that explains the output of any 
machine learning model by assigning feature importance values based 
on the concept of Shapley values from cooperative game theory. These 
values reflect the contribution of each feature to the model’s output and 
enabled us to identify the most important features for predicting Alz-
heimer’s disease. Additionally, SHAP facilitated our understanding of 
the underlying biological mechanisms of the disease by generating 
feature-level visualizations, which allowed us to investigate how each 
input feature influenced the model’s predictions. 

Based on SHAP explainers [62], we calculated each clinical feature 
contributions of clinical model. Fig. 8 shows the top ten clinical features 
in the model. The most influential feature is FDR followed by RAVIL-I 
(RAVIL- immediate). It is important to note that features with a longer 

tail to the right have a greater positive influence, and the reverse is also 
true. All top ten features are symmetric between the two classes. For 
example, low values of FAQ negatively affect pMCI predictions, but they 
positively influence sMCI predictions. Please refer to the supplement for 
important features of SNPs. 

6. Discussion 

In this study, we propose a Hierarchical Attention-based Multimodal 
Fusion framework (HAMF) that uses three modalities, MRI, SNP, and 
Clinical, as the input of prediction tasks of conversion from MCI to AD. 
The model achieve excellent accuracy, sensitivity, specificity, and F1 
score of 87.2 %, 93.3 %, 80.4 %, and 88.4 %, respectively, and an AUC of 
91.1 %. 

The simplest and most used approach for multimodal fusion is to 
directly concatenate or sum features from different modalities into the 
classifier [16–22]. For example, An et al combined MRI, PET, and ce-
rebrospinal fluid markers directly into their AD classification model 
[14]. Venugopalan et al. used CNN and MLP to complete the dimen-
sionality reduction of MRI, SNP, and Clinical, respectively. They fed the 
three reduced features into the classifier in series to complete the clas-
sification of AD [15]. However, different modalities contain various 
amounts of information for completing the task. In Fig. 4, the AUC of 
MCI to AD conversion prediction using direct concatenation fusion 
strategies of the three modalities is lower than that of the Clinical modal 
alone, indicating that direct concatenation or summation is not effective 
at highlighting critical information or suppressing redundant informa-
tion, which reduces model performance in varying degrees. Addition-
ally, different modalities have rich connections, so direct concatenation 
or summations cannot effectively explore the relations between different 
modalities, which affects the fusion effect. Moreover, as illustrated in 
Fig. 6, the attention-based multimodal fusion model outperforms the 
model based on general connection multimodal fusion. Using the 
attention mechanism, weights can be assigned to various modalities by 
back-propagation dynamic weighting, and the more important modal-
ities are given larger weights. The model performance is improved by 
improving the expression of important information and suppressing 
redundant information to obtain a more accurate representation of 
fusion features [63]. As well as exploring the relationship between 
different modalities, hierarchical attention with nonlinear gating makes 

Fig. 6. Performance of different fusion strategies.  

Fig. 7. A visual representation of HAMF’s hierarchical attention fusion strat-
egy. Both the pair-wise attention (first layer) and the higher layer scores of the 
clinical-MRI model are the highest. 
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optimal use of nonlinear connections among different modalities com-
binations. In contrast to general attention and linear gating hierarchical 
attention, our method combines multiple modalities more effectively, 
resulting in better outcomes. These results demonstrate the effectiveness 
of the hierarchical multimodal fusion method proposed in this study. 

This study investigates the performance of different unimodal and 
multimodal MCI to AD conversion predictions and provides a compre-
hensive evaluation of the importance of different modalities (including 
different unimodal or multimodal). By comparing the evaluation of MCI 
to AD conversion prediction with different unimodal or multimodal, we 
have identified the following key findings. First, the optimal unimodal 
model was Clinical based with an accuracy of 83.7 %, which is consistent 
with several existing studies [18,64]. This study suggests that using non- 
invasive Clinical data for AD prediction may be a good option when 
budgets are limited, or initial clinical recruitment screenings have been 
performed. We also used SHAP to rank the importance of features in 
Clinical unimodal model to increase the interpretability of the model. As 
Fig. 8, the most influential feature is FDR followed by RAVIL-I and 
ADAS13 which is consistent with previous studies [45]. 

Additionally, multimodal fusion improves AD prediction model 
performance. Two- or three-modality fusion models achieved higher 
AUC values than single-modality models, with MRI&SNP& Clinical 
achieving the best AUC of 91.1 %. MRI &Clinical was the best two- 
modality combination, achieving an AUC of 90.4 %. This is consistent 
with existing studies [22,65–68] that different modalities describe AD 
from different perspectives, capturing the heterogeneity of the disease 
and improving MCI to AD conversion prediction. MRI highlights struc-
tural changes in the brain from the macroscopic aspect, while SNP ex-
plains AD heritability from a microscopic biology perspective, and 
Clinical describes functional changes in disease process. This suggests 
the necessity of multimodal fusion for the prediction of AD. Notably, 
MRI & Clinical & SNP achieved the optimal AUC but the same accuracy 
as MRI & Clinical, both at 87.2 %, indicating that the addition of SNP did 
not improve the model’s prediction accuracy. The accuracy of SNP for 
model evaluation was 66.6 %, the lowest among all unimodal models. 
The reason for this result may be that both Imaging and Clinical data are 
phenotypic features that are closely related to diagnostic labels, but 
SNPs are genetic features that indicate genetic variation predisposition 
of disease but not necessarily directly connected to a current disease 
condition represented by the diagnostic labels [14,69]. 

Lastly, this study summarizes the research on predicting MCI to AD 
conversion using multimodal fusion over the past three years as shown 

in Table 4. We selected studies that met the following criteria compar-
ison: (1) Classification model of AD conversion prediction. (2) 

Fig. 8. SHAP summary plot for the clinical unimodal model. The left figure and right figure show the sMCI and pMCI class respectively. Dots represent instances and 
their colors indicate feature values (red = high, blue = low). 

Table 4 
Comparison of state-of-the-art research on AD conversion prediction using 
multimodal fusion.   

Type of 
modality 

Feature 
extraction 
Method 

Fusion Method AUC ACC 

Our MRI +
SNP +
Clinical 

CNN +
SDAE +
DNN 

Hierarchical 
Attention 

0.91 0.87 

Wang et al., 2022  
[57] 

MRI +
Clinical 

CNN Concatenate 0.91 0.85 

Pena et al., 2022  
[15] 

MRI +
Clinical 

CNN 
Transfer 
learning 

Concatenate 0.85 NA 

Mirabnahrazam 
et al., 2022  
[16] 

MRI +
SNP 

ROI based Concatenate NA 0.74 

Ma, Zhang, & 
Wang, 2022  
[58] 

MRI +
fMRI 

Riemannian 
Manifold 

Self-Attention NA 0.85 

Ning, Xiao, Feng, 
Chen, & Zhang, 
2021 [59] 

MRI +
PET 

ROI based Shared 
Representation 

0.84 0.85 

El-Sappagh, 
Alonso, Islam, 
Sultan, & 
Kwak, 2021  
[17] 

MRI +
PET +
APOE4 
+

Clinical 

ROI based Concatenate 0.88 0.87 

Shen et al., 2021  
[18] 

MRI +
PET +
Clinical 

ROI based Concatenate 0.79 0.78 

Yang et al., 2021  
[19] 

MRI +
Clinical 
+ APOE4 

CNN Concatenate 0.90 0.83 

Shao, Peng, Zu, 
Wang, & 
Zhang, 2020  
[60] 

MRI +
PET 

ROI based Hypergraph 0.70 0.75 

Khatri & Kwon, 
2020 [20] 

MRI +
APOE4 
+ CSF +
Clinical 

ROI based Concatenate 0.83 0.83 

Forouzannezhad 
et al., 2020  
[21] 

MRI +
PET +
Clinical 

ROI based Concatenate NA 0.73  

P. Lu et al.                                                                                                                                                                                                                                       



Biomedical Signal Processing and Control 88 (2024) 105669

11

Containing at least two modalities. (3) Published in the last 4 years 
(preprint was not included). (4) The data were from ADNI. The models 
in this study achieved state-of-the-art results, outperforming existing 
studies. This is partially due to the hierarchical attention we have 
adopted, as well as the deep learning-based feature extraction approach. 
As shown in Table 4, several previous studies have used feature engi-
neering or selected regions of interest (ROI) as the extracted features 
[17–19,21,22,60,61], ignoring other features in the model and some-
times leading to information loss. Instead, we extract all features from 
each modality using deep learning, which improves the model’s per-
formance. Reviewing the existing studies on multimodal fusion-based 
for predicting MCI to AD conversion reveals that MRI is the most 
used, while SNP is less commonly used. This may be related to the fact 
that SNP has limited value for the improvement of a AD prediction 
model. This limited usefulness of SNP may be attributed to the diverse 
nature of the disease, which comprises multiple distinct types. In com-
parison to studies based on time-series data, our study requires only a 
static dataset, which has the advantages of simplicity and low cost. 
Moreover, our model also produces better results than time series data 
[64,70]. Multimodal fusion methods based on hierarchical attention 
mechanisms are shown to be effective again by comparing them with 
other studies. 

Although it has demonstrated promising results, the proposed 
method still has some limitations. First, our method combined three 
modalities (MRI, SNP, and Clinical), but the ADNI database includes 
other modalities, such as PET and CSF, and the clinical data contains 
many more features than the 44 we used. Second, we only tested our 
method on the two-class problem, but accurate diagnosis of patients at a 
particular stage of the disease is important. Lastly, the confidence in-
tervals of our results show overlapping between the modalities. Future 
studies could use additional tests such as reclassification indices (e.g., 
absolute reclassification index, integrated discrimination index) or 
comparison of ROC curves with statistical tests to further validate our 
findings. 

7. Conclusion 

In this work, we propose a Hierarchical Attention-based Multimodal 
Fusion framework (HAMF) to predict MCI to AD conversion. Many 
existing multimodal models simply concatenate the features from each 
modality, regardless of their importance or cross-modality connections. 
To address this problem, we employ hierarchical attention-based 
multimodal fusion in which attention reinforces the most important 
features extracted from each modality, and hierarchical attention re-
inforces the relationship between the modalities. This results in an ac-
curacy of 87.2 %, which is superior to existing multimodal fusion 
methods and defines the state-of-the-art for predicting MCI to AD con-
version. We also investigate the importance of each modality and mo-
dality combination to inform decision-making and inspire future data 
collection efforts. We anticipate that our work will benefit clinical 
practice and provide insight into the powerful hierarchical attention- 
based models. In the future, we plan to explore our method with more 
modalities and investigate our method in multi-class classification, 
including AD/CN/sMCI/pMCI. 
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